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- Specific Equations for One and Two Section
Quarter-Wave Matching Networks for
Stub-Resistor Loads

RALPH LEVY, FELLOW, IEEE, AND JOSEPH HELSZAJN, MEMBER, IEEE

Abstract — Given a load network consisting of a conductance in parallel
with a short-circuited stub, the admittance values of optimum one and two
section commensurate transmission line matching networks are derived.
These values are expressed in closed form as functions of the bandwidth
and ripple level. It is shown that optimum networks have nonzero reflection
coefficient minima, as predicted by classical broad-band matching theory.

I. INTRODUCTION

CLASSIC PROBLEM in microwave engineering is
the broad-band matching of a one-port network con-
sisting of a conductance shunted by a short-circuited stub.
A typical example is encountered in the matching of junc-
tion circulators. A convenient form of matching network
consists of one or more equal length (i.e., commensurate)
transmission lines. Several authors have described solutions
for the general case having n such lines, the most general
result being presented in [1]. A schematic diagram of the
network is shown in Fig. 1. It should be noted immediately
that this particular form of matching network is not neces-
sarily optimum in having the maximum “gain-bandwidth”
product for a given length, but it may be the most conve-
nient for a practical situation. A more optimum network
for a similar distributed load network is given in [2], but
this is not necessarily so from a practical point of view
where realizable impedance levels are a prime consider-
ation.
Papers on matching networks have fallen into two cate-
gories. The first consists of sophisticated general solutions
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Fig. 1. The general (n — 1)-section matching network.

such as [1], [2], which have found limited use because of
their complexity, not readily appreciated by or compre-
hensible to a majority of engineers. Included would be the
classic papers by Fano [3] and Youla [4]. In the second
category are papers which take a more elementary ap-
proach, usually involving analysis of one or two section
matching networks, leading to results suitable for practical
applications, [5], [6]. These methods involve either ap-
proximations or solutions to complicated nonlinear simul-
taneous equations, so that in one sense they are actually
more complex than the papers of category 1.

One object of this paper is to demonstrate that the
classical (“sophisticated”) synthesis method of category 1 is
actually simpler than the direct (“brute force) method of
category 2 when applied to equally simple networks, i.e.,
with one or two matching elements rather than the general
n-element case. Specific equations for the elements of the
matching networks result, and computer-derived solutions
are not required.

A second objective is to solve the matching problem for
the general case where the reflection coefficient minima
take on finite values rather than zero. This gives improved
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bandwidth and control over the impedance level within the
matching network.

II. THEORY

In some previous work the insertion loss function of the
network of Fig. 1 has been chosen as a simple Chebyshev
function which neglects the pole of attenuation due to the
short circuited shunt stub. Although this causes a rather
small error for low-ordered networks it is an unnecessary
approximation, and here the exact function is used.!

The general form of Chebyshev insertion loss function
for the network shown in Fig. 1 is [1]

L=1+K?+¢
. cos @ .
(1+Sm0°)T"(cT00) (1 31n00)7;,_2(

2sinf

cos
cos f,

(1)

where T, represents the Chebyshev polynomial of the first
kind of degree n, and 8 is the electrical length of all the
transmission lines in the network, i.e.,

_ 2l
0= N (2)

The parameters defined by (1) are later expressed in terms
of the maximum and minimum passband VSWR, and the
fractional bandwidth (31)—(33). The siné term in the de-
nominator takes account of the attenuation poles at § =0,
2q,---, etc., and the form of insertion loss for the first
harmonic passband centered at § = 7/2 is shown in Fig. 2.
This insertion loss function may be synthesized for any
value of n and the other parameters. In general this in-
volves numerical root-solving of high-degree polynomials,
but in the case n =2 and n =3 closed-form solutions may
be found, since these cases involve at most the solution of a
cubic. The two cases will be taken in turn. The general
synthesis method is similar to that given in [7].

ITI. CaSE n =2 (SINGLE SECTION MATCHING
NETWORK)

Here the insertion loss function (1) reduces to
L=1+K*+¢?

2
2cos’ @ _

cos? 6,
2sinf

(1+sin00)( 1)—(1——sin00)

()

Applying Richards’ transformation

(4)

tand - — jt

'Actually use of the simple Chebyshev function of degree 3 or less gives
a result close to the exact solution because only one or two ripples are
present, and the function can only be equiripple! The advantage of (1) is
in inherently defining the load network and enabling exact closed-form
solutions to be obtained.

2 2
I+K+€
2

l+K

Fig. 2.

Fig. 3. Single section matching network.

then (3) becomes

1+sinf (1= )
cos? §,
L=1+K*+¢ —
ji(1=0"

U+ K)AA=A) =2 +B)
B 2(1— %)

(5)

where
B =tan? 6, +tané, /cosb,. (6)

Following the Darlington synthesis technique [7], we
form the squared modulus reflection coefficient
-1

o L—-1_ K22(1—12)— (2 + B)
]I‘(t)| L (1+K2)t2(1—t2)_62(t2+ﬁ)2.

™

The numerator of (7) is
N(t)N(—=t)=(K2+e2)t*+2(Be® — K2/2)1% + B2
(8)
N(ON(—t)=at* + bt* + ¢ 9)
=(R*+&) (=) (2=17)  (10)

where ¢§ is the complex conjugate of #,. The denominator
of (7) is given by (10) with K? replaced by (1+ K?).

If the reflection coefficient is defined as that looking
back from the load conductance G, as shown in Fig. 3,
then it may be demonstrated that the optimum choice of
factorization of (10) is the Hurwitz polynomial having
zeros only in the left-half complex plane. The other choice
where the zeros are in the right-half plane is a valid
solution of the synthesis problem, but gives a nonoptimum
result for the matching problem, as discussed in the Ap-
pendix. Of course the denominator is forced to be Hurwitz
by fundamental considerations.
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The Hurwitz factorization of (10) is
N(t)=VK?+ e (t+1,)(t+¢F)
=VK2+ e [+ (s, o)+ 2]. (1)

From (9) and (10) the values of the squared roots are given

57

and
dy=2/c. (25)

Note that n,d, =1. This is now to be synthesized to give
the network of Fig, 3. Rather than extracting elements

by using Richards’ theorem, etc. (7), it is simpler here to
. 5 analyze Fig. 1 and use a coefficient comparison method.
2,102 = —b=* jydac—b (12) The transfer matrix of the unit element and stub is
b 2a .
Hence t/Y‘] Yl/t (1)]
1 - t2 Yl 1 2
2=t =S (13)
. 1 [1+Y2/Y, t/Yl] 26)
2 — C r—— .
(1,+17) =t,2+t;"2+2|t1|227+2\/; (14) oz | Yt/ 1
from which Normalizing the elements of this transfer matrix to the
terminations of conductances 1 and G gives the output
111?‘:\/ ﬁca_____b_ _ (15) impedance
. o . D+B.
This completes the derivation of the Hurwitz numerator Z(t)=—=F A+C
polynomial (11), i.e.,
141/, G
N()=yK?*+ V +‘/7 (16) 1+Y2/Y1+Y1t+Y2/t
2
with a, b, and ¢ being the coefficients of (8). The de- = (G/Y)i*+Gt . (27)
nominator is given by (16) with 1+ K2 replacing K2, i.e., N2+ (14 Y /Y4 Y,
2 +1)c —b+1
D()={1+K*+¢& t2+\/ (a a)il | — (17)
The reflection coefficient is therefore
/ 2yac —b \/*
(18)

()= —
(=7 avi t +\/2\/(a+1)c —b+1

The negative sign is assigned to I'(¢) because at dc (¢ =0)
the reflection coefficient corresponds to that of a short
circuit, where I' = —1.

The output impedance at the plane shown in Fig. 3 is
now expressed as

w-Bf g o

where
n,=fa+1—\Ja (20)
dy=fa+1+ya (21)
m=y2f(a+1)c —b+1—\2fac—b  (22)
=/2f(a+1)c—b+1+y2fac—b  (23)
=0 (24)

H_V a+1

Direct comparison of (22) with (27) gives the required final
closed-form solution, i.c.,

a+1

=N
r=2 (28)
Y,=nyd, (29)
G=n12 (30)

where n,d, has been replaced by unity in (29) and (30).
The above parameters are defined in terms of a, b, and ¢
by (23)—(25), which in turn are given as functions of the
original parameters K, ¢, and 6, via (8)—(9) and (6). These
are related to the usual parameters of fractional bandwidth

w, maximum and minimum VSWR by the relations
w=2—46, /7 (31)

(32)

=(1+ K>+ +fk2 e
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and

Sun=(1T K2 +K)". (33)

Note also that S, =G /Y2, as required by a basic rela-
tionship at the midband frequency.

IV. CaSE n =3 (TWO0O-SECTION MATCHING
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t-plane, (this is true also in the case n =1 for K =0).
The general case (37) or (38) is a cubic in ¢, which may
be solved by Cardan’s method. Substituting

and temporarily ignoring the factor K, (37) becomes the

cubic

1=

(40)

NETWORK)
Here the general insertion loss function (1) becomes x> +ax+b (41)
. 4cos’d  3cosl ) cosé
(1+sm00)( o578, <050, ) (1 SmoO)cosHO
— 2, .2
L=1+K>+¢ Tend (34)

Applying Richards’ transformation (4), after a little algebra the insertion loss becomes

2 2
(14 K2)2(1— 12 ——< 2 (2+sinf,)(1—12)
cos? @, | 1—sinb,
t2(1—12)
The squared modulus reflection coefficient is where
L—1 _ N(t)N(—1) 2
I(1))?= = 36 R
| ( )| L D(Z)D(—t) ( ) a=—¢q 3 (42)
where and
3
2 {24sing, \* b=2(£) _M_)_
N(ON(—1)=K2| 6 — 4 2+€—2(—££—°) ) 3 3 7 (43)
K 0 then the roots of (41) are given by
i 1_2_e2 sinf,(2+siné,) x,=A+B (44)
K?  (1-sin8,)’
3 4
5 xz,x’z":—g—;—lg)ij—‘/;-i-z—B (45)
_ & [ singy(1+sinby)
K2\ cosfy(1—sinb,) where
2 3
= K2(15+ pt*+qi* +r). (37) A3,B3=—§t (%) +(5) - (46)
As in the previous case (n =2), D is the same as N except _ '
that K2 is replaced by 1+ K2 The numerator polynomial ~Taking account of (40), the required roots for (38) are
is now expressed as t?=A4+B —i37_ (47)
NON(—1)= k(2= )= 3)(12 = 173)
(for K #0) (38) 204
where ¢, is real, 7, complex. In this form of (37) we must 2 t*z__(A+B +£) . 'E(A—B ¥+ ix
have K #0. When K =0, (38) is replaced by the numerator 272 2 3)777 )= X% )X,
of (35) with K =0, which from (37) results in (48)
N(ON(—t)=¢2 2+sinfy , sinfy 1+siny | 13, t5? are solutions of the quartic (quadratic in ¢?)
cos b, cosf, 1—siné, t4—2X1t2+(X12+X22)=O. (49)

(for K=0). (39)

This is a perfect square and the Hurwitz factorization is
self evident. The zeros lie on the imaginary axis of the

Occasionally (especially in large bandwidth cases) three
real roots may occur, in which case (46) becomes complex,
and (48) must be modified accordingly. The Hurwitz fac-
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Y, Y,

Fig. 4. Two-section matching petwork,

torization of (38) is given as
N()=K(1+1)[12+ (6, + 15)1 +]1,]?]
=K[P+(+ 4, + )2+ (|2 + (6 +13))t + 1)1,
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so that
K2, =y1+K?Z;. (57)

Proceeding as in the n =2 case, the transfer matrix of the
reactive portion of Fig. 4 is

1 1 /Y1 /Y, 1 0]
1—2| Y 1 ||y 1 |[Y/t 1
1
1—12

Y1/, +1/5)+50%/Y, (/Y +1/%)
=.K[t3+21t2+22t+23] (50) (YI+YZ+YIY3/Y2)t+YS/t 1+Y]t2/Y2
where the real root is given by (47) and the real factors (58)
t, -+t and |1,|? required for (50) are obtained from (49).
giving the output impedance
D+B (Y\G/Y,)+(1/Y,+1/Y,)Gt? + Gt
Z(t): ) = 3 2 : (59)
A+C (L/Y)E+H(N+ L+ 1Y, /) +(1+ 5(1/Y, +1/5,)) + ¥,

Following the procedure of (12)-(15) we obtain

|t]? =y X7 + X7 (51)
b+ =12 X+ /X2 + x2) (52)

This completes the algebra required to determine the
numerator polynomial N(t) in ‘closed form. It is only
slightly more complicated than the n =2 case, involving the
simple algebraic relationships (37, 42-43, 46-48, 50-52).

Again, as in the n =2 case, the denominator D(t) of I'(x)
is obtained from N(¢) by the simple expedient of replacing
K? by 1+ K. The reflection coefficient becomes

[ K(B+22+3,t+3,)

T K (P + S+ S+ 3)

(for K#0) (53)

I'(t)=1 2+sind, , , sinf,(1+sind,)
€ - t H .

cos b, cos B,(1—sin6,)
(P+Z+24+34)

(for K =0). (54)

Again, the minus sign is chosen to give I'(0)=—1, as
required by the presence of the short-circuited shunt stub.
The circuit is shown in Fig. 4, and the output impedance is
formed as )

1+T(z) _  ny® +nyt*+ny

Z(t)= .
() 1-T(t)  dyt®+dyt*+dt+d,

(55)

The n, term in (55) is zero, since comparison of (37) with
(53) shows that

S;=freg and  ZEf e ——

e oY

Comparing (55) and (59) leads to the expressions

/Y, _dy 1 1 _m
G n, Yi Y2 n 60
Y _d yi.=" (€0
G n ¥ on,
giving the closed-form solutions
+
y, =27 (61)
n,
_nY
L= (62)
Y;=nd, (63)
G=n; (64)

The coefficients ny, n,, - - -
example,

are given via (53) and (55). For

n, =1+ K> — K
n,=y1+K?3|~ K3, (65)

Note also that in obtaining (63)-(64) we have used the
fact that nyd, =1, a similar relationship to the previous
case for n=2.

To summarize the practical computations, the first step
is to determine parameters 6, K, and ¢ from (31)-(33). The
coefficients p, g, and r are formed in (37), and parameters
a, b, A, B, t, t,, t5, X,, and X, are derived from these
using (42)-(43) and (46)—(48). The sums and products of
root factors 2, 2,, and 2, defined in (50) are given by
(51)-(52), and similar factors =, =5, 23 are derived by
repeating the entire process with 1+ K ? replacing K 2. The
closed-form expressions for the circuit elements are given
in (61)-(64), where the coefficients n,, d, are defined by
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TABLE I
ONE-SECTION MATCHING NETWORKS

DEGREE N= 2 G(MAX)= 1.2 S(MINY= 1
W G B Q Y1

0.100 54,899 343,593 64259 8,117
0,150 24.878 102,448 4,119 G464
Q. 200 14,371 43,4608 3.035 4,153
0,250 9,507 22,568 2,374 3,378
0,300 44865 13.222 1,926 2.870
0,330 G272 8,440 1.601 2,519
0.400 4,239 5,737 1.353 2,255
0,450 3.530 4.089 1.158 2.068
0,500 3,023 3.026 1.001 1,905
0,550 2.648 2.307 0.871 1.782
04600 2,360 1.802 0.763 1.684
0.667 2.077 1.336 0.643 1.579

DEGREE N= 2 S(MAX)= 1.2 SMINY= 1.02

W G R’ Q Yi
0,100 52.013% 332,465 6,392 7.900
0.1350 23,584 99.178 4,205 %320
Q.200 13.434 42,2020 3.097 44040
0.250 ?.028 21.863 2,422 3,292
0.300 44527 12.816 1.964 2799
0,350 5.019 8,184 1.4631 2.454
0,400 4,040 54567 1.378 2,202
0.450 3,369 3.971 1.179 2,011
0.500 2.889 2.941 1.018 1.8642
0,550 2,534 24243 0.885 1.744
0.600 2.0264 1.754 0.774 1.648
0,667 1,995 1.301 0,452 1547
DEGKEE N= 2 S(MaxXy= 1.2 SIMIN)= 1,04

W G B’ Q Y1
0.100 48.738 3146.180 &£.487 7,648
0.150 a2.118 94,360 4,266 BelhY
0,200 12.801 40.197 J.140 3.919
Q. 250 8.489 20.827 2,453 3.192
Q.300 44147 12,219 1.988 2.714
0.350 4,735 7.812 1.650 2,384
Q0.400 3.819 5.318 1.393 2.141
0,450 3,191 3.797 1.190 1,957
0.%00 2,742 2.814 1.027 1.814
0,550 2,409 2.149 0.892 1.700
0.600 2,157 1,681 0.779 1,609
Q. 667 1.90% 1.249 0,656 1.512

DEGREE N= 2 S(MAX)= 1,7 S(MIN)= 1.06

W G E’ Q Yi
0.100 45.124 295,209 6,542 7,359
0.1%50 20,502 88.1%54 4,300 4,960
0,200 11.88% 37.983 3,162 3.776
0,250 7.8%96 19.492 2.468 3.078
0,300 5.730 11.448 1.998 2,622
Q350 4,425 74328 1.654 2,304
0.400 3.577 4,994 1.394 2.072
Q. 450 2,997 3.5 1.192 1.896
0.500 2,582 24650 1.026 L.760
0,550 2,375 2,026 0.891 1,652
0.600 2,042 1.887 0.777 1.5460
0. 667 1.80% 1,182 0.653 1.473
DEGREE N= 2 G(MaXy = 1,2 S(MIN)= 1.08

W G B Q Yt
0.10 41.19% 269.883 4,551 7.031
0,150 18.747 80.654 4,302 4,743
Q.200 10.890 34,423 3,161 3,614
Q.250 7,253 17.876 2.464 2.9u1
0,300 5.080 10.51% 1.991 2017
0.350 4,090 6,741 1.648 2,215
¢.400 3.318 4,602 1.387 1,994
0. 450 2.789 3,296 1.182 1.829
0.500 2.411 2,450 1.016 1.701
Q550 24132 1.877 0.880 1.599
0.600 1.920 1.473 0.767 1.518
0.b667 1.708 1.098 0.643 1.432

DEGREE N= 2 S(Maxy= 1.2 S(MIN)= 1.1

W G B’ Q Yi
0.100 36,949 240,386 4.506 6.659
0.150 16.851 71,919 4.268 4,497
0,200 ?.818 30,739 3.131 3.432
0.2050 6.563 15.991 2.437 2,806
0.300 4,795 9.424 1.965 2,399
0+350 3,730 4,055 1,623 20116
0.400 3,039 4,143 1.363 1.910
0.450 2,566 2.974 1.15¢9 1.75%
04500 2,228 2,216 0.994 1,639
0,330 1.979 1.701 0,859 1.541
0. 4600 1.7%90 1.337 0.747 1,465
0,667 1.601 1.000 0.625 1,386

comparison of (53) and (55), as in (65). If K =0, corre-
sponding to S ;. =1, then (54) is used rather than (53), and
the denominator is derived from (37) by setting K =1.

The validity of (61)-(64) may be tested by recognizing
the following relationship between Y;, Y,, and G, obtained
from the input admittance at the center frequency:

Y}
o = . 66
=Yg (66)
V. RESULTS

Results for one and two section matching networks are
given in Tables I and II. Only a few examples are given
since they are easily derived from the closed-form results
presented in the text. In order to enable comparison to be
made with previous results, e.g., [6], the stub admittance
Y, ., is replaced by its equivalent susceptance slope param-

n

eter B’, where

’— W);+l
B_4

Similarly the Q factor of the load network is listed, where

Q=B/G (68)

(67)

The object of this work is to maximize the bandwidth for a
given Q, or alternatively maximize Q for a given band-
width. Inspection of the tables shows that there is an
optimum value of S, which maximizes Q for a given
bandwidth, as predicted by basic matching theory [3], [4].
However the value of Q varies rather slowly with S, i-e.,
the optimum region is rather flat. The optimum value of
Spin 1S roughly halfway between S, and unity.

Since we have derived a closed-form expression for Q in
terms of the network parameters, including S, ; , in theory
it should be possible to differentiate this expression with
respect to S, to determine an expression for its true
optimum value. However, the differentiation is extremely
tedious, and the turning-point relationship is a high-order
polynomial in S, . Since, as stated above, many results are
easily tabulated and the optimum region is so flat, formal
solution of the optimum appears to be an unnecessary
exercise.

Of equal interest is the fairly wide range of impedance
levels which may be obtained by changing S, , resulting in
some degree of flexibility in choice of dielectric materials
for realizing the impedances of the matching transmission
lines. Examination of the tabulated results indicates that
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TABLEII

TwoO-SECTION MATCHING NETWORKS

DEGREE N= 3 S(HMAX)= 1.15

W

0.200
0,250
0,300
0.350
0.400
0,450
0.500
Q.3550
0.600
0667
0.700
Q.7%0
Q.800
0.850
0.900
0.950
1,000

DEGREE N= 3 S(MAX)= 1,15

W

0,200
Q. 250
0.300
Q. 350
0,400
0.450
0,500
0.550
0.600
04667
0,700
0.750
0.800
0.830
Q.200
0.950
1.000

DEGREE N= 3 S{MAX)= 1,15

W

0.200
0,250
0.300
0,350
0.400
0.450
0.500
0.5%0
0.600
0+667
0.700
0,750
0.800
0.850
0.900
0. 950
14000

DEGREE N= 3 S(MAX)= 1,15

W

0.200
0.250
74+300
0,350
0,400
Q4450
0.500
0.550
0.600
Q667
0.700
0.750
0.800
Q.830
0,900
Q. 950
1.000

G

580.786
240,220
117.341
64,382
38.519
24,657
16,4672
11.801
8,687
6,083
34193
4.187
3,458
2.918
2,511
2.200
1,957

G

452,332
187,508
91.859
50.587
30,402
19.567
13.315
?.4%4
74047
4,996
4,293
3,497
2,920
2,492
2.168
1.920
1.727

G

309.011
128.630
63.360
35,134
21.296
13.846
Q. 535
6.891
G.192
3.763
3.272
2,714
2,308
2.006
1,778
1.602
1.4646

G

138.408
58,304
29,231
16,559
10.302

6.908
4,928
3.704
2.911
2,238
2,005
1.739
1,545
1.400
1.290
1,523

1.738

Rl

2253.269
736,770
295,436
134,404

69,843
38.714
22.852
14,198
9.205
5,458
4,288
3,052
2,224
1,653
1,250
0.961
0,748

B’

1742.610
570,432
229,069
105,957

54,374
30,223
17.897
11,160
74266
4,334
3.417
2,445
1.791
1,338
1.018
0.787
0,616

B

1152.644
378,096
132,247

70,666
346,419
20,345
12,120
744609
4,991
3,010
2.387
1.724
1.274
0.961
0,238
0.573

0.404

B

458.742
151,441
61.496
28.8%0
15,064
8.546
$.182
3.317
2,222
1381
1.111
0.820
0.620
0.477
0.374
0.410
0.446

S(MIN)=
Q

3,880
3.067
2,018
2,119
1.813
1.570
1.371
1.203
1.060
0.897
0.826
0,729
0,643
0.566
0.498
0,437
0.382

S(MIN) =
Q

3.853
3.042
2,494
2,093
1.789
1.545
1.344
1.17%
1,031
0.868
0.796
0.699
0.613
0.537
0+470
0.410
0,356

S{MIN) =
Q

3.730
2,939
2,403
2.011
1.710
1.469
1.271
1.104
0.961
0.800
0.730
0. 635
Q4502
0.479
0.4156
0.359
0.310

SIMIN) =
Q

3.314
2.599%
2.104
1,742
1,462
1.237
1.051
0.8%96
0.763
Qea17
0.5%4
0.472
0.401
0.341
0.290
0.270
0.257

1.08

Y1

3.881
3.144
2,660
2.321

2,071

1.882.

1.735
1.618
1.524
1,425
1.384
1,332
1,288
1,251
1.220
1.194
1.171

1.1
Yi

3.872
2,900
24440
24153
1.928
1.758
1.627
1,523
1,440
14353
1.317
1,272
1.234
1.203
1,176
1,154
1.135

1.12
Yi

3.173
2,387
2,205
1.939
1.7446
1,602
1.491
1,404
14339
1.244
1.236
1.199
1.170
1.145
1.125
1.108
1,093

1.14
Y1

2.528
2.084
1.799
1.604
1,465
1.363
1..287
1.229
1.184
14139
i.122
1.100
1.083
1.069
1.058
1.084
14105

97.189
D0+ 639
29,945
19,351
13,360
P.713
74362
5777
4,668
34653
3.279
24832
2.489
2,222
2,010
1.840
1.703

Y2

79.668
41.652
24,733
16,060
11,140
8.157
6,205
4,921
4,008
34171
2.862
2,494
2212
1.991
14816
1.677
1.%564

Y2

§59.027
314049
18.573
12.145
8,029
6.308
4,872
3,901
X220
2,096
2,366
2,091
1,881
1./717
1,08/
1.484
1.401

Y2

31.758

16.998

10.384
6.968
5,020
3,820
3,000
2,525
24157
1482
1.4696
1.549
1.437
1,351
1.283
1.428
1,556

DEGREE N= 3 S(MAX) = 1,18
W G B/
0.200 969.349 3486.510
0.250 399,553 1138.,049
0,300 194,299 455,324
0.350 106.011 209,635
0,400 62,989 106.970
0.450 39.9688 G9.049
0,500 264777 34,687
0.550 18,741 21,430
0.400 13,4620 13.805
0,667 94356 8,106
0,700 7.902 4,336
0.730 64265 4,472
0,800 5.083 3.229
0,850 4,211 2.378
0,900 3,585 1.782
0.9%0 3,054 1.336
14000 2,665 1,045
DEGREE N= 3 S(MAX) = 1.15
W G R’
0.200 893,332 3313%.304
Q0,250 368,379 1081.745
Q0.300 179.240 432,918
0,350 P7.862 199,388
0,400 584196 101.785
0.450 346.983 G96.215-
0.+500 24,794 33,042
0.550 17.378 20.428
0,600 12,649 13,170
Q4667 8.709 74742
0.700 7.366 6,085
0. 7%0 5.8%2 4,279
¢.800 4,758 3,093
0.8%50 3.951 2.280
Q4200 3.344 1.711
0. 950 2.880 1,303
1.000 2,320 1.006
DEGREE N= 3 S(MAX) = 1,15
W G B
0.200 801.796 3043.68%
04250 330.8%50 994.04%
0.300 161,116 397,989
0,350 88,060 183.398
0.400 52,436 ?3.683
0,450 33.374 G1.781
0.500 22,416 30,463
9,550 15.744 18.854
0,600 11.488 12.170
Q647 7.939 7.168
04,700 b.728 Se612
0.750 G.362 3.972
0.800 4,375 2,876
0.850 3,644 2,124
0.900 3.098 1.597
0. 950 2.478 1.219
1,000 2,353 0.943
DEGRFE N= 3 S(MAX) = 1,15
W G B’
0.200 497,205 2688.010
0,250 287.967 878,302
0,300 140.406 351,866
4.350° 746.861 162,270
0,400 45.854 82.970
04450 29,2352 45.912
0.500 19,700 27.047
0.550 13.880 16.766
0.600 104163 10.841
Qe G&7 71062 4402
0.700 6.002 5.020
0.7350 4,806 3.561
0.B800 3.941 2,585
0.850 3.302 1.914
0.900 2.820 1.443
0,950 2,451 1.104
1.000 24163 0.856

S(MIN)= 1

@ Y1
3.597 4,732
2.848 3.818
2.343 3.214
1.977 2.789
1.4698 2.474
1.477 2.233
1.29% 2,044
1.143 1,893
1,014 1.770
0.866 1,639
0.802 1,584
0,714 1,514
04635 1.454
0.565 1.403
0.501 1,359
0.444 1.321
0,392 1,289
S(MIN)= 1.02

Q Yi
3.709 4,559
2.936 3.681
24415 3.102
24,037 2,693
1,749 2,392
1,529 2,161
1,333 1.981
1,176 1.8346
1.041 1.719
0.889 1,594
0.822 1,542
0.731 1.475
0+650 1.418
0,577 1.370
0.512 1.329
0453 1.0294
0.399 1.263
S(MIN)= 1.04

Q Y1
3,794 4,363
3.00%5 3.500
24470 2.9/4
2,083 2.58%
1.787 D290
1.552 2,080
1.359 1.909
1.198 1./72
1.059 1,662
0,903 1.%544
0.834 1,495
0.741 1.432
0657 1.379
0.583 1,334
0515 1.096
0.435 1,263
0.401 1.23%
S(MIN)= 1.06

a Yi
3.885 4,139
3,050 3,348
2.504 2.828
2.1 2,462
1.809 2,193
1,570 1.988
1.373 1.827
1.208 1.700
1.067 1.597
0.207 1.488
0.836 1.443
0.741 1.38%5
0.636 1.336
0.3580 1.296
0.512 1,260
0.450 1.230
0.3%98 1.205

Y2

147,312
746,309
44,805
28,712
19,635
14,123
10.579

8.196
4,533
5013
4,454
3.789
3.277
2.878
2562
2,309
2,104

Yo

137 .630
71,355
41,940
26.909
18,428
13,275

?.961
7.731
b1 75
4,792
4,008
3.604
3,105
2,751
2455
20217
2,020

Yo

125.987
654394
34,491
24,738
16.973
12,253

9.216
2171
G743
4,437
3.936
3.383
2,942
2.598
2.326
2.108
1.932

Y2

112,820
58,498
34.498
22,022
15.286
11067

84351
6.521
5,042
4,071
3.4640
3,126
2,731
2,423
2.178
1.983
1.805
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the case corresponding to S, =1 leads to an upper bound
on the absolute values of G and B’. There is a useful
reduction as S, increases beyond the values of S,
corresponding to the optimum bandwidth. This is of con-
siderable value in the design of junction circulators, in that
it is often difficult to realize large values of G and B’. Since
the loaded Q of the circuit is almost independent of S, it
allows some uncertainly in their absolute values to be
accomodated, provided that their ratio satisfies the re-
quired Q of the load circuit.

Practical circulators have often been designed with a
final result corresponding to S,,;, 1, but possibly without
theoretical comprehension of the network problem.

V. CONCLUSIONS

The element values of one and two section quarter-wave
matching networks for a stub-resistor load network have
been derived in closed form as functions of bandwidth and
ripple level, with S,;, different from unity. This represents
an advance over previous results for these simple matching
networks, where the solution has been given only in im-
plicit form for the single section (degree n =2) case [8].

The higher degree (n =3) case has particular application
in the design of quarter-wave-coupled junction circulators
of octave bandwidth or more.

The ability to vary S,;, leads to significantly useful
variation of impedance levels within the structure in addi-
tion to optimization of bandwidth. It explains previous
empirical results observed in practical junction circulators.

APPENDIX

The general matching problem is shown in Fig. 5, where
M is the matching network. In deriving the network M we
have formed the reflection coefficient I,,(¢) looking back
from the load admittance. By writing down the unitary
condition on the lossless scattering matrix it can be shown
[1] that if

Ny ()

D,y(1)= D(twj_ (69)
then
Nn( 1)
ll(t)_ D(l) . (70)

Hence if a set of zeros is chosen for T',(z), then the
complementary set appears in I';(#).

When the network M is a cascade of commensurate
transmission lines, and if I',(¢) has zeros all in the left-hand
complex plane, then synthesis with the opposite choice of
zeros corresponds to a Kuroda transformation, with the
shunt stub transformed through the first network to be
adjacent to the other resistive termination. In the cases
considered in this paper there is no difference between the
two choices if S, =1 or K =0, because then the reflection
coefficient zeros (by definition) all lie on the imaginary axis
of the complex plane. It is interesting that for this special

_Pﬁ_,.a ‘_rzz
i

!
E
A
§ low ?e
i
T

Fig. 5. General matching problem.

g

case the Kuroda transformation results in an identical
network.

The reason why I),(¢) should have a Hurwitz numerator
is given by consideration of basic gain-bandwidth theory.
In the case of the load network of Fig. 5 the following
integral must be satisfied [2]-{4]:

fﬁlm L_ 0=
o @7 !I‘22|2

where & is the real frequency axis of the s-plane, and the ¢,
denote the right-half plane zeros of I',,(7). The summation
indicated in (71) is a positive real quantity since these zeros
are real or occur in complex-conjugate pairs. The integral
on the left-hand side of (71) is invariant to choice of zero
distribution between the left and right half-planes because
it involves only the modulus of I';,. In order to maximize
the Q(=(n/4)(Y,/G)) it is necessary to minimize G/Y;,
i.e., to make the reciprocal root summation in (71) zero.
Hence the optimum choice to maximize Q for a given
bandwidth requires I',5(#) to be chosen with zeros only in
the left-hand complex #-plane.

This condition has been investigated in the present
matching problem by choosing the zeros incorrectly in the
right half-plane. It was determined that this caused large
reductions in Q values, and significantly the maximum
values of Q occurred for S ; =1, ie., the Q values de-
creased montonically as S, increased for a fixed values of
S and bandwidth.

max

27rG

- Z - ()
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Noise in Broad-Band GaAs MESFET
Amplifiers with Parallel Feedback

KARL B. NICLAS, SENIOR MEMBER, IEEE

Abstract —The  influence of the circuit elements of a single-ended
feedback amplifier module on noise figure and gain, as well as on input and
output reflection coefficients is discussed. Theoretical results are supported
by tests performed on a five-stage single-ended amplifier. The unit exhibits
41.5=0.8 dB of small-signal gain and a maximum noise figure of 4.0 dB
between 2.4 and 8.0 GHz. Maximum reflection coefficients of 1.7:1 for the
input and 1.5:1 for the output terminal were measured. The unit’s overall
circuit dimensions are 25<3.6 mm.

I. INTRODUCTION

ECENT ADVANCES in the performance of single-
ended microwave feedback amplifiers have resulted in
a device that promises to challenge the conventional type

amplifier in many applications. This is especially the case

whenever compact size and low cost are a factor in broad-
band microwave amplification [1}, [2]. In addition to multi-

Manuscript received June 24, 1981; revised August 11, 1981.
The author is with Watkins-Johnson Company, Palo Alto, CA 94304,

octave bandwidths and low-reflection coefficients, the
feedback amplifier shows great potential for low-noise
applications. This is true in spite of the thermal noise
injected by the feedback resistor.

The influence of reactive feedback on the noise figure of
microwave amplifiers has been studied by several re-
searchers [3]-[5]. It has also been pointed out that reactive
feedback reduces the minimum noise figure of microwave
amplifiers, a fact that has been known to designers of VHF
amplifiers for several decades [6].

This paper addresses the noise in broad-band microwave
amplifiers with parallel feedback. Formulas for the equiva-
lent noise parameters and noise figure of such amplifiers
are presented. They take into account the thermal noise
agitation of the resistor in the feedback loop. Based on
these theoretical solutions, the influence of the circuit
elements on noise figure, gain, and reflection coefficients of
a practical amplifier are discussed. Attention is focused on
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