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Specific Equations for One and Two Section
Quarter-Wave Matching Networks for

Stub-Resistor Loads

RALPH LEVY, FELLOW, lEEE, AND JOSEPH HELSZAJN, MEMBER, IEEE

A Mract — Gken a load network consisting of a conductance in paraflel

with a short-circuited stub, the admittance vafues of optimum one and two

section commensurate transmission line matching networks are derived.

These values are expressed in closed form as functions of the bandwidth

and ripple level. It is shown that optimum networks have norrzero reflection

coefficient minima, as predicted by classical broad-band matching theory.

I. INTRODUCTION

A CLASSIC PROBLEM in microwave engineering is

the broad-band matching of a one-port network con-

sisting of a conductance shunted by a short-circuited stub.

A typical example is encountered in the matching of junc-

tion circulators. A convenient form of matching network

consists of one or more equal length [i.e., commensurate)

transmission lines. Several authors have described solutions

for the general case having n such lines, the most general

result being presented in [1]. A schematic diagram of the

network is shown in Fig. 1. It should be noted immediately

that this particular form of matching network is not neces-

sarily optimum in having the maximum “gain-bandwidth”

product for a given length, but it may be the most conve-

nient for a practical situation. A more optimum network

for a similar distributed load network is given in [2], but

this is not necessarily so from a practical point of view

where realizable impedance levels are a prime consider-

ation.

Papers on matching networks have fallen into two cate-

gories. The first consists of sophisticated general solutions
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Fig. 1. The general (n – I)-section matching network.

such as [1], [2], which have found limited use because of

their complexity, not readily appreciated by or compre-

hensible to a majority ’of engineers. Included would be the

classic papers by Fano [3] and Youla [4]. In the second

category are papers which take a more elementary ap-

proach, usually involving analysis of one or two section

matching networks, leading to results suitable for practical

applications, [5], [6]. These methods involve either ap-

proximations or solutions to complicated nonlinear simul-

taneous equations, so that in one sense they are actually

more complex than the papers of category 1.

One object of this paper is to demonstrate that the

classical (“sophisticated”) synthesis method of category 1 is

actually simpler than the direct (“brute force”) method of

category 2 when applied to equally simple networks, i.e.,

with one or two matching elements rather than the general

n-element case. Specific equations for the elements of the

matching networks result, and computer-derived solutions

are not required.

A second objective is to solve the matching problem for

the general case where the reflection coefficient minima

take on finite values rather than zero. This gives improved
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bandwidth and control over the impedance level within the

matching network.

II. THEORY

In some previous work the insertion loss function of the

network of Fig. 1 has been chosen as a simple Chebyshev

function which neglects the pole of attenuation due to the

short circuited shunt stub. Although this causes a rather

small error for low-ordered networks it is an unnecessary

approximation, and here the exact function is used. 1

The general form of Chebyshev insertion loss function

for the network shown in Fig. 1 is [1]

L=1+K2+62

[

() ()
2

(l+sinf30)~ % –(1–sinflo)L.2 ~

2 sine 1
(1)

where T. represents the Chebyshev polynomial of the first

kind of degree n, and 8 is the electrical length of all the

transmission lines in the network, i.e.,

~= 21Tl

A’
(2)

The parameters defined by (1) are later expressed in terms

of the maximum and minimum passband VSWR, and the

fractional bandwidth (31)-(33). The sin i3 term in the de-

nominator takes account of the attenuation poles at O= O,

2T,. ... etc., and the form of insertion loss for the first

harmonic passband centered at 8 = IT/2 is shown in Fig. 2.

This insertion loss function may be synthesized for any

value of n and the other parameters. In general this in-

volves numerical root-solving of high-degree polynomials,

but in the case n =2 and n = 3 closed-form solutions may

be found, since these cases involve at most the solution of a

cubic. The two cases will be taken in turn. The general

synthesis method is similar to that given in [7]. -

III. CASE n =2 (SINGLE SECTION MATCHING

NETWORR)

Here the insertion loss function (1) reduces to

L=1+K2+62

‘!‘l+sin’O)(=&l)-(l-sin’J2
2 sine 1

Applying Richards’ transformation

tanfl–– jt

(3)

(4)

‘Actually use of the simple Chebyshev function of degree 3 or less gives
a result close to the exact solution because only one or two ripples are
present, and the function can only be equiripple! The advantage of (1) is
in inherently defining the load network and enabling exact closed-form
solutions to be obtained.

t
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Fig. 2. Insertion loss function ( n = 5).

Fig. 3. Single section matching network.

then (3) becomes

II
l+sin$ -(~-t2) 2

COS2e,
L=1+K2+C2

jt(l–t)l’2

__ (l+ K’)tql-t’)-+’+@2— (5)
tz(l–tz)

where

@=tan260 +tandO/cos O.. (6)

Following the Darlington synthesis technique [7], we

form the squared modulus reflection coefficient

\q~)]2=~=- K%2(l-t’)-@2+@2

(l+ K2)t2(l-t2)-c2( t2+#

(7)

The numerator of (7) is

N(t) N(–t)=’(K2 +c2)t4+2(&2 –K’/2)t2 +D262

(8)

N(t) N(–t)=at4+bt4+c (9)

=( K2+,2)(t2–tf)(t2 -t~’) (lo)

where t ~ is the complex conjugate of t]. The denominator

of (7) is given by (10) with K 2 replaced by (1+ K 2).

If the reflection coefficient is defined as that looking

back from the load conductance G, as shown in Fig. 3,

then it may be demonstrated that the optimum choice of

factorization of (10) is the Hurwitz polynomial having

zeros only in the left-half complex plane. The other choice

where the zeros are in the right-half plane is a valid

solution of the synthesis problem, but gives a nonoptimum

result for the matching problem, as discussed in the Ap-

pendix. Of course the denominator is forced to be Hurwitz

by fundamental considerations.
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The Hurwitz factorization of (10) is

N(t)= /-(t+ 1,)(1+ t:)

=/-[t’+(t, +tf)t+lt,j’]. (11)

From (9) and (10) the values of the squared roots are given

by

Hence

(t, +tT)’=t; +tf’+21t1’=; +2fi

from which

i’26 –b
t,t~ =

a“

(12)

(13)

(14)

(15)

This completes the derivation of the Hurwitz numerator

polynoniial (1 1), i.e.,

with a, b, and c being the coefficients of (8). The de-

nominator is given by (16) with 1+ K 2 replacing K2, i.e.,

The

57

and

dO=2fi. (25)

Note that n ~dz = 1. This is now to be synthesized to give

the network of Fig. 3. Rather than extracting elements

using Richards’ theorem, etc. (7), it is simpler here to

analyze Fig. 1 and use a coefficient comparison method.

The transfer matrix of the unit element and stub is

JJ4,t ‘T’][b !]

[

l+ Y2/Y,
_—

-&
Y,t +Y2/t I

‘/ly’ . (26)

Normalizing the elements of this transfer matrix to the

terminations of conductance 1 and G gives the output

impedance

Z(t)=~. G

l+t/Y,—
l+ Y2/Y1+Y1t+Y2/t

G

(G/Y, )t2+Gt—— (27)
Y1t2+(l +Y2/Y, )t+Y2”

(1D(t)=~~ tz+
2~(a+l)c –b+l

r)
t+ ~

a+l a+l “

reflection coefficient is therefore

(17)

(18)

The negative sign is assigned to I’(t)because at dc (t =0) Direct comparison of (22) with (27) gives the required final

the reflection coefficient corresponds to that of a short closed-form solution, i.e.,

circuit, where 17= – 1.

The output impedance at the plane shown in Fig. 3 is
y,=l!l (28)

n.
now expressed as

.

Y2=n1d0 (29)
l+r n2t2+n1t

(19) G=n~ (30)Z(t)= 1_r=d2~2+d1t+do

where
where n 2d2 has been replaced by unity in (29) and (30).

The above parameters are defined in terms of a, b, and c

nz=~–~ (20) by (23)-(25), which in turn are given as functions of the

d,=~+~ (21)
original parameters K, c, and 00 via (8)–(9) and (6). These

are related to the usual parameters of fractional bandwidth

nl= 2~~–b+l–{G (22) w, maximum and minimum VSWR by the relations

d,= 2~~–b+l +{’ (23)
W=2—460/T (31)

no=O (24) sm.=(i’’+/-)2 (32)
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and t-plane, (this is true also in the case n = 1 for K = O).
The general case (37) or (38) is a cubic in tz, which may

S~i~=(~~+K)2. (33) be solved by Cardan’s method. Substituting

Note also that S~= = G/Y~, as required by a basic rela-

tionship at the midband frequency.
~2=x_; (40)

IV. CASE n = 3 (TWO-SECTION MATCHING and temporarily ignoring the factor K, (37) becomes the

NETWORK) cubic

Here the general insertion loss function (1) becomes x3+ax+b (41)

P )(l+sinOO) %-% -(l-sindO)%

1

2

L=1+K2+c2
2 sin 8

Applying Richards’ transformation (4), after a little algebra the insertion loss becomes

[ 1
(l+ K2)t2(l–t2)2–& 2 –(2+sinOO)(l–t2) 2

Cos’00 1– sm 60
L=

The squared modulus reflection coefficient is

,~(t)12=L–1 _ iV(I)~(-t)

L – D(t) D(–t)

where

[

N(t) N(–t)=K2 t6–t4

(

+t’ 1–:
1

()2 2+sin60 2
2+~

K2 Cos $0

Z sin 6.(2+ sin 60)

; (1-sind,)’ )

c2

-( )]

sin60(1 +sin80) 2—
K’ cosdo(l–sineo)

t’(l– t’)’

(36)

=K2(t6+pt4+qt2+ r). (37)

As in the previous case (n= 2), D is the same as h’ except

that Kz is replaced by 1 + K‘. The numerator polynomial

is now expressed as

N(t)N(–t)=K’(t’ –t; )(t’–t:)(t’–t”;)

(for K #O) (38)

where t,is real, t‘complex. In this form of (37) we must

have K #O. When K = O, (38) is replaced by the numerator

of (35) with K = O, which from (37) results in

[

2+sindOt2+
N(t)N(–t) =6’ 1sin 00 1+ sin 60 2

Coso~ cos 00 1—sin f10

(for K =0). (39)

This is a perfect square and the Hurwitz factorization is

self evident. The zeros lie on the imaginary axis of the

(34)

(35)

where

and

.

(42)

(43)

then the roots of (41) are given by

X,=A+B (44)

*__(A+B)&j/+; B
x2,x2—

2
(45)

where

2+/(;)2+(;)3.
A3,B3=–! (46)

Taking account of (40), the required roots for (38) are

tf=A+B–; (47)

and

+_ ~jE(A_B)=x, &jx2‘ ~2__ A+B p

(
t2, t2 — —

23 ) 2

(48)

t;, tj2 are solutions of the quartic (quadratic in t 2)

t4–2x1t’+(x: +x; )=o. (49)

Occasionally (especially in large bandwidth cases) three

real roots may occur, in which case (46) becomes complex,

and (48) must be modified accordingly. The Hurwitz fac-
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so that

Fig. 4. Two-section matching petwork.

torization of (38) is given as

N(t)= K(i+t,)[t’ +(t2+tj)t+/t21’]

=.K[t3 +(t, +t2 +tj)t’+(lt2/2 +t1(t2 +tj))t+t*]tJ2]

= K[t3 +S,tz + X’t + 23] (50)

where the real root is given by (47) and the real factors

t2 -t~j and It2[2 required for (50) are obtained from (49).

K23=/l+K22’ 3. (57)

Proceeding as in the n =2 case, the transfer matrix of the

reactive portion of Fig. 4 is

*[llt “ll;t ‘T’][A!]
-1

l–t’

Jl+lj(l,Y,+l,Y2) +Y2t2,Y, (l,Y,+l,YJt]

[(Y,+q+Y,~/Y’)t+~ /’t l,+ Y,t2/q

giving the output impedance

(Y,G/Y2)t3 +(l/’Y, +l/Y2)Gt2+Gt

‘(t)=%” G = (Y2/Y1)t3+(Y, +Y2+Y3Y, /Y2)12+(l+ Y3(l/Y1+l/y2))t+y3 “

Following the procedure of (12)-(15) we ?btain

[t2[’=/~ (51)

[
t2-tt;= 2(x,+/~) (52)

Thk completes the algebra r~quired to determine the

numerator polynomial IV(i) in ‘clos&l form. It is only

slightly more complicated than the n =2 case, involving the

simple algebraic relationships (37, 42-43, 46–48, 50–52).

Ag&n, as in the n = 2 case, the denominator D(t) of I’( t)

is obtained from iV(t ) by the simple expedient of replacing

K 2 by 1+ K 2. The reflection coefficient becomes

r(t)=
(for K +0)

(2+sin@0 zt + sin@o(l+sint30)
6

Cos 80 cosdo(l-sin6j) )

(for K =0).

(53)

(54)

Again, the minus sign is chosen to give r(0)= – 1, as

required by the presence of the short-circuited shunt stub.

The circuit is shown in Fig. 4, and the output impedance is

formed as

z(t)=
l+r(t) = n3F+n2t2+n1t

(55)
l–I’(t) d3t3 +d2t2+d1t+do “

The nO term in (55) @ zero, since comparison of (37) with

(53) shows that

Comparing (55) and (59) leads to the expressions

Y2/ Y1 d3 1— =.
G 71

+J_2=!2

nl n,

Yd3_ o

-i-<

yl-2 = $

1

giving the closed-form solutions

n*+n3
y,=

n2

Y3=n1do

1
(58)

(59)

(60)

(61)

(62)

(63)

(64)

The coefficients n ~, n ~, “ “ . are given via (53) and (55). For

example,

T
~_Kn3= I+K

-F ‘n2– l+K Xl– KXl. (65)

Note also that in obtaining (63)-(64) we have used the

fact that n ~d~ = 1, a similar relationship to the previous

case for M=2.

To summarize the practical computations, the first step

is to determine parameters 6., K, and c from (3 1)–(33). The

coefficients p, q, and r are formed in (37), and parameters

a, b, xl, B, tl, t2, t;, Xl, and X2 are derived from these

using (42)–(43) and (46)–(4”8). The sums and products of

root factors Xl, 22, and 23 defined in (50) are given by

(51)-(52), and similar factors 2;, X2, ~: are derived by

repeating the entire process with 1+ K2 replacing K’. The

closed-form expressions for the circuit elements are given

in (61 )–(64), where the coefficients n,, d, are defined by
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TABLE I
ONE-SECTION MATCHING NETWORKS

tIEGREE N= 2 5( MAX)= 1.2

w G E’

0.100 54,899 343. s93

0.150 24. s7s 102.468
0.200 14,371 43.608

0.2U0 9.507 :v0+=J,5fJ

0.300 6.863 13.222
0.350 q,~y~ 8.440
0.400 4.?39 !5 .737

0.450 3.:)30 4.089
0+500 3.023 3+026

0.550 2+448 2.307

0+600 7 ,36.9 1.802

0.667 2.077 1,336

S(MIt4)=

n

6.25Y

4+119
3.035
2.374
1,926
1,601
1 .33.3
1.158
1.001
0.871
0,76:3
0.643

1 !JEGRE E

w

0.100

0.150
0.200
0.250

0.300
0.350
0.400

0.450
0.500
0.s50
0.600
0.667

N= 2 S(MAX)= 1.?

G n’

45.124 295+209
~o,fiot 88.154
!1.8S3 37.583

7.896 19.49?
5.730 11,448
4.42s 7,328
3.577 4.994

2+997 3.571

S(MIt4)=

Q

6.542

4.300
3.162
2.4.s8

1.998

1 .656
1.396

1.192

1.04

YI

7.359

4.960
3.776
3,078

2+6?:)

2.304
~&072

1.896

YI

8.117

S,464
4.i5.3
3.378
2.870

1.905
1.782
1.684

1+?)79

2,582 2.630
‘T ,773 2+026

1.026
0.891

1.760
1.65:>

?,042 i .387
.l. Eio9 1.182

0.777
0.653

1 .56:;
1 .47.3

DEGREE N= 2 S(MAX)= 1.:? S(MIN)= 1,02

Yi
7,900

!3.320
46045
3.2??
2,79Y

2+454
2 ,:Jo:)
?. 011
1.8. s?

1 $744
1 .648
1..547

DEGF(EE N= 2 S(MAX)= 1.2

w G E’

0+100 41.195 269+ GFI.3

0,150 18.747 80,656

0.200 10.890 34.423

0.?50 7+253 17.876

0,300 5.?80 10+515

0.350 4.090 6.741

0.400 3.318 4.602

0.450 2.789 3.296
()+500 2.411 2.450

0.550 2.132 1.877

0.600 1 +920 1.473
0,.567 1.708 1.098

S(MIN)=

c1
6.551
4.302

3,i61

?,464
1,991
1.648
1.387
l,i8?
1.016
0.880

0.767
0.643

1.08

YI
7+03.t
4.743

3.6t$

2+9:11
~+3,7
-l,:>~s

1.995
1 .8?9
1+701
1.599

1,S!8
1,432

w
0.100

0.150
0,200
().25()

0.300

0.350
0.400
0,450

0.500
0,550
0.600
0.66?

G
32,01$$

23.384
134634

9.028
6.327

5.019
4.040
3,369
2.889
7+534
~+~64

i .995

I-1’
33?.463

99+i78
4?,:~:?:,
21.863
i2,816

8.186
5.567
3.971
2.94!
2+243
1+754
i..~ol

n
A+ 39?

4.205
3.097
?+ 422
1+<?64

1.631
I ,378
1.179

1.018
0+885
0+774
0+65?

[lELjt(EE! Na 2 S(Mf$X)= 1,2 1,04 [lEGREE N= 2 S(MOX)= 1.2 s(MIN):z 1.1

w
0.100
O,iso
0.200
0.250

0,300
0.350

0.400
0.430
0.500
0+550
0.600
0,667

G
4$3.738
~~+1~8

12+801
8.489
6.147
4.735
3.819
3.i Yl
2.742
2.409
?+ 157

1 .90?5

F!’

3~6. iRO
94.360
40+L97
20.877
12. ?19

7.812
5.318
3,797
2.!314
2.149
1+681
1,249

n
.4.487
4.266

.3. 140
?. 453

1 .98S
1 +650
1.393
1$190
1 .077
0.892
0.779
0,656

Y]
7.648
3.17:)
3.919

3,i9:!
?. 716
2+3H4
:). i4j
1 .(??,7

1+8~4
1.700
1.609
1.512

w

0.100
0.150
0.200

0.250
0+300
().350
().400
0.450

0.500
().550
().600
(), 667

G
36.949
16,851

B’
240.386

71+919

C/
6+306

4.268
3.i3i

2+437
i.965
1.623
14363
1.159

0+994
0,839
0.747

0.625

Yi
6.ti!39

4.497
9.81E

6.563
4+795
3,730
3.039
2+566

2,+228

1,979
1,790

1.601

30+739

i5.99i
9.424
6,055
4.143

3.432

2.806
2.399
2.116

1,910
1.755
1.635
i .541

1+337

1.000

1,465
1,386

comparison of (53) and (55), as in (65). If K = O, corre-

sponding to 5’~i~ = 1, then (54) is used rather than (53), and

the denominator is derived from (37) by setting K = 1.

The validity of (61)–(64) may be tested by recognizing

the following relationship between Y,, Yz, and G, obtained

from the input admittance at the center frequency:

The object of this work is to maximize the bandwidth for a

given Q, or alternatively maximize Q for a given band-

width. Inspection of the tables shows that there is an

optimum value of S~,~ which maximizes Q for a given

bandwidth, as predicted by basic matching theory [3], [4].

However the value of Q varies rather slowly with S~l~, i.e.,

the optimum region is rather flat. The optimum value of

Stin is roughly halfway between S~= and unity.

Since we have derived a closed-form expression for Q in

terms of the network parameters, including S~i~, in theory

it should be possible to differentiate this expression with

respect to S~ti to determine an expression for its true

optimum value. However, the differentiation is extremely

tedious, and the turning-point relationship is a high-order

polynomial in S~,~. Since, as stated above, many results are

easily tabulated and the optimum region is so flat, formal

solution of the optimum appears to be an unnecessary

exercise.

Of equal interest is the fairly wide range of impedance

levels which may be obtained by changing S~~, resulting in

some degree of flexibility in choice of dielectric materials

for realizing the impedances of the matching transmission

lines. Examination of the tabulated results indicates that

Y;
s =—

‘n y@”
(66)

V. RESULT5

Results for one and two section matching networks are

given in Tables I and II. Only a few examples are given

since they are easily derived from the closed-form results

presented in the text. In order to enable comparison to be

made with previous results, e.g., [6], the stub admittance

Y~+, is replaced by its equivalent susceptance slope param-

eter B’, where

Similarly the Q factor

(67)

of the load network is listed, where

Q= B’/G (68)
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TABLE II

TWO-SECTION MATCHING NETWORKS

61

DEGREE

w

0.200
0.250
0.300
0.350
0.400
0.450
0.500
0.550
0.600

0.667
().700

0.7s0
0.800
0. (?3O

0.900

(). 950
“1,000

N= 3 S(tlf)x)= 1.15 S(MIN)= 1.,08 DEGREE N= 3 S(MAX)= 1+15 S(MIN)= 1

G !3’

!580 .786 ~~~3.~69

240.220 736.770
117.341 29 Z,436

64.382 136.404
3G.519 69+843
24.657 38.714
16+672 22.8X?

11.801 i4.198
8,6S7 9,205

6.083 5.458
5+193 4.288

4.187 . 3,052
3.458 ~,~24

2.918 1+653
~.5il 1.,250
z.~oo 0.961
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the case corresponding to Sti ==1 leads to an upper bound

cm the absolute values of G and B’. There is a useful

reduction as S,ti increases beyond the values of Sti~

corresponding to the optimum bandwidth. This is of con-

siderable value in the design of junction circulators, in that

it is often difficult to realize large values of G and B’. Since

the loaded Q of the circuit is almost independent of S,ti, it

allows some uncertainly in their absolute values to be

accommodated, provided that their ratio satisfies the re-

quired Q of the load circuit.

Practical circulators have often been designed with a

final result corresponding to Sti # 1, but possibly without

theoretical comprehension of the network problem.

V. @NCLtTSIONS

The element values of one and two section quarter-wave

matching networks for a stub-resistor load network have

been derived in closed form as functions of bandwidth and

ripple level, with S.ti different from unity, This represents

an advance over previous results for these simple matching

networks, where the solution has been given only in itn-

plicit form for the single section (degree n = 2) case [8].

The higher degree (n= 3) case has particular application

in the design of quarter-wave-coupled junction circulators

of octave baridwidth or more.

The ability to vary, Sti~ leads to significantly useful

variation of impedance levels within the structure in addi-

tion to optimization of bandwidth. It explains previous

empirical results o~served in practical junction circulators.

APPENDIX

The general matching problem is shown in Fig. 5, where

M is the matching network. In deriving the network M we

have formed the reflection coefficient I’2J(t) looking back

from the load admittance. By writing down the unitary

condition on the lossless scattering matrix it can be shown

[1] that if

then

r,,(t)=
Nl,(–t)

D(t) -

(69)

(70)

Hence if a set of zeros is chosen for Tzz(i), then the

complementary set appears in r,,(t).
When the network M is a cascade of commensurate

transmission lines, and if ~z.Jt) has zeros all in the left-hand

complex plane, then synthesis with the opposite choice of

zeros corresponds to a Kuroda transformation, with the

shunt stub transformed through the first network to be

adjacent to the other resistive termination. In the cases

considered in this paper there is no difference between the

two choices if Sti, = 1 or K = O, because then the reflection

coefficient zeros (by definition) all lie on the imaginary axis

of the complex plane. It is interesting that for this special

‘*
,

M [G
YL ‘

Fig. 5. General matching problem.

case the Kuroda transformation results in

net work.

an identical

The reason why I’22(t) should have a Hurwitz numerator

is given by consideration of basic gain-bandwidth theory.

In the case of the load network of Fig. 5 the following

integral must be satisfied [2]–[4]:

where il is the real frequency axis of the t-plane, and the t,

denote the right-half plane zeros of ~22(t).The summation

indicated in (71) is a positive real quantity since these zeros

are real cm occur in complex-conjugate pairs. The integral

on the left-hand side of (71) is invariant to choice of zero

distribution between the left and right half-planes because

it involves only the modulus of 171z.In order to maximize

the Q( = (n/4)(YL /G-)) it is necessary to minimize G/YL,

i.e., to make the reciprocal root summation in (71) zero.

Hence the optimum choice to maximize Q for a given

bandwidth requires 17J t) to be chosen with zeros only in

the left-hand complex t-plane.
This condition has been investigated in the present

matching problem by choosing the zeros incorrectly in the

right half-plane. It was determined that this caused large

reductions in Q values, and significantly the maximum

values of Q occurred for Sti = 1, i.e., the Q values de-

creased monotonically as S.un increased for a fixed values of

S~&X and bandwidth.

[1]
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Noise in Broad-Band GaAs MESFET
Amplifiers with Parallel Feedback

KARL B. NICLAS, SENIOR MEMBER, IEEE

Abstract —Tfte influence of the circuit elements of a single-ended

feedback amplifier module on noise figure and gain, as well as on input and

output reflection coefficients is discussed. Theoretical resufts are supported

by tests performed on a five-stage single-ended amplifier. Tke unit exhibits

41.5& 0.8 dB of smafl-signa~ gain and a maximum noise figure of 4.0 dB

between 2.4 and 8.0 GHz. Maximum reflection coefficients of 1.%1 for the

input and 1.S1 for the output terminaf were measured. The unit’s overafl

circuit dimensions are 25X 3.6 mm,

octave bandwidths

feedback amplifier

and low-reflection coefficients, the

shows great potential for low-noise

I. INTRODUCTION

R ECENT ADVANCES in the performance of single-

ended microwave feedback amplifiers have resulted in

a device that promises to challenge the conventional type

amplifier in many applications. This is especially the case

whenever compact size and low cost are a factor in broad-

band microwave amplification [1], [2]. In addition to multi-
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applications. This is true in spite of the thermal noise

injected by the feedback resistor.

The influence of reactive feedback on the noise figure of

microwave amplifiers has been studied by several re-

searchers [3]–[5]. It has also been pointed out that reactive

feedback reduces the minimum noise figure of microwave

amplifiers, a fact that has been known to designers of VHF

amplifiers for several decades [6].

This paper addresses the noise in broad-band microwave

amplifiers with parallel feedback. Formulas for the equiva-

lent noise parameters and noise figure of such amplifiers

are presented. They take into account the thermal noise

agitation of the resistor in the feedback loop. Based on

these theoretical solutions, the influence of the circuit

elements on noise figure, gain, and reflection coefficients of

a practical amplifier are discussed. Attention is focused on


